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Following a theoretical proposal on multi-impurity charge Kondo circuits [T. K. T Nguyen and
M. N. Kiselev, Phys. Rev. B 97, 085403 (2018)] and the experimental breakthrough in fabrication
of the two-site Kondo simulator [W. Pouse et al, Nat. Phys. (2023)] we investigate a thermo-
electric transport through a double-dot charge Kondo quantum nano-device in the strong coupling
operational regime. We focus on the fingerprints of the non-Fermi liquid and its manifestation in
the charge and heat quantum transport. We construct a full-fledged quantitative theory describ-
ing crossovers between different regimes of the multi-channel charge Kondo quantum circuits and
discuss possible experimental realizations of the theory.

I. INTRODUCTION

Thermoelectric materials have been investigated in
recent years thanks to their ability to generate electric-
ity from waste heat or being used as solid-state Peltier
coolers [1]. The mechanism of converting of heat into
voltage known as the Seebeck effect [2] is associated with
the emergence of the electrostatic potential across the
hot and cold ends of the thermocouple [3, 4] while no
electric current flows through the system. The Peltier
effect is manifested by the creation of the temperature
difference between the junctions when the electric cur-
rent flows through the thermocouple.
After theoretical predictions have been suggested that

the thermoelectric efficiency could be greatly enhanced
through nano-structural engineering in the mid-1990s,
many complex nano-structured materials were studied
in both theory and experiment [5–8]. Nano-electric cir-
cuits based on one or a few quantum dots (QDs), which
are highly controllable and fine-tunable, can provide im-
portant information about the effects of strong electron-
electron interactions, interference effects and resonance
scattering on the quantum charge, spin and heat trans-
port.

One of the fundamental motivations of the thermo-
electric studies is to enhance thermoelectric power (ab-
solute value of the Seebeck coefficient, TP). It is a chal-
lenge for both experimental fabrication of devices and
theoretical suggestions for efficient mechanisms of heat
transfer. In fact, the theoretical investigations showed
that the TP of a single electron transistor (SET) was
greatly enhanced in comparison with those of bulk ma-
terials [9, 10]. Furthermore, the charge Kondo effect
[11–13, 15, 16] dealing with the degeneracy of the charge
states of the QD (which is similar to the conventional
Kondo effect [17–21] but does not require the system to
have magnetic degree of freedom) can be a tool for in-
tensification of the TP of a SET [14, 22]. The building
block of a charge Kondo circuit (CKC) is a large metallic
QD strongly coupled to one (or several) lead(s) through
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an (or several) almost transparent single-mode quan-
tum point contact(s) [QPC(s)]. In the orthodoxal charge
Kondo theory [11–13], the electron location (namely, in
or out of QD) is treated as an iso-spin variable, while
two spin projections of electrons are associated with
two (degenerate, in the absence of external magnetic
field) conduction channels in the conventional Kondo
problem. External magnetic field lifts out the channel
degeneracy resulting in a crossover from two channel
Kondo (2CK) regime at the vanishing magnetic field to
the single channel Kondo (1CK) regime at the strong
external field [23]. As a result, the behavior of the sys-
tem continuously changes from non-Fermi liquid (NFL)
to the Fermi liquid (FL) states respectively. The inter-
play between NFL-2CK and FL-1CK regimes in ther-
moelectric transport through the SET has been investi-
gated [16, 23–29]. The charge transport in 1CK and
2CK regimes were studied extensively numerically in
Refs.[30–33]. The effects of the electron-electron inter-
actions in the charge Kondo simulators have been con-
sidered recently[26, 28, 34, 35].

Recently, CKCs operated in the integer quantum Hall
(IQH) regime have been implemented in breakthrough
experiments [36, 37]. With the advantage that the num-
ber of Kondo channels is determined by the number of
QPCs attached to the metallic QD, these experiments
have opened an access to investigation of the multi-
channel Kondo (MCK) problem experimentally. The
dominant characteristic of a specific MCK setup is a
NFL picture [38–40] which is associated with ZM sym-
metry. For instance, the NFL-2CK [41–43] is explained
by Majorana fermions [44, 45], the NFL-3CK physics is
related to Z3 parafermions [46–51]. Therefore, switch-
ing between Z2k+1 and Z2k low temperature fixed points
by controlling the reflection amplitudes of the QPCs,
can provide a route to investigate the crossovers be-
tween states with different parafermion fractionalized
zero modes [52].

As a CKC is considered as an artificial quantum sim-
ulator for the technology of quantum computer, scaling
up the CKCs to clusters or lattices is challenging and it
is important to understand the nature of the coupling
between neighboring QDs. For this motivation, the
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experiment [53] has implemented a two-island charge
Kondo device in which two QDs are coupled together
and each one is also strongly coupled to an electrode
through a QPC. The authors investigated the quantum
phase transition at the triple point where the charge
configurations are degenerate. Being more than the two-
impurity Kondo (2IK) model, the two-site charge Kondo
circuit is relevant to the Kondo lattice systems. Further-
more, the deeper theoretical investigation of the strong
central coupling of this setup [54, 55] in the Toulouse
limit showed that a Z3 parafermion emerging at the
critical point, was already present in the experimental
device of Ref. [53].
In this work, we revisit the model proposed in Ref.

[25] which contains a tunnel contact between two CKCs
where each one is set up in either FL or NFL state (see
Fig. 1) with a two-fold goal. First, we examine the be-
havior of TP in order to find a mechanism to enhance it.
Secondly, we show the existence of Majorana fermions
in this double charge Kondo circuit (DCKC). The non-
perturbative solution is obtained which allows to moni-
tor and control all FL-NFL crossovers. The new energy
scale associated with the inverse lifetime of the emer-
gent Majorana fermions controls four different regimes
of thermoelectric transport based on the window of pa-
rameters. Moreover, the non-perturbative results re-
ported in this paper complete a full-fledged theory of
the non-Fermi liquid to Fermi liquid crossover in the
DCKC.

The paper is organized as follows. We describe the
proposed experimental setup and the theoretical model
in Sec. II. General equations for the thermoelectric coef-
ficients are presented and the nonperturbative solution
is discussed in Sec. III. The Sec. IV represents the cor-
relation function in different cases. The main results are
discussed in Sec. V. We conclude our work in Sec. VI.

II. PROPOSED EXPERIMENTAL SETUP AND
THEORETICAL MODEL

We consider a DCKC device (see Fig. 1) formed by
two CKCs describing a very recent experiment [53]. The
building block for each CKC is a QD-QPC structure im-
plemented in experiment [36]. The QD is a large metal-
lic island (the dark-red and blue cross-hatched areas sur-
rounded by the black lines) electronically connected to
a two-dimensional electron gas (2DEG, the orange and
grey continuous areas). The 2DEG is connected to two
large electrodes through two QPCs. Applying a strong
magnetic field perpendicular to the 2DEG plane can
control the 2DEG in the IQH regime at the filling fac-
tor ν = 1. The QPCs are fine-tuned (by field effects in
the split gates illustrated by the blue boxes) to the high
transparency regime corresponding to weak backscat-
tering of the chiral edge mode (red solid lines with ar-
rows). We investigate the regime of equal reflection am-
plitudes at two QPCs in each CKC: |r11| = |r12| = |r1|
and |r21| = |r22| = |r2|. Therefore, each CKC is a 2CK

V

V

V

V

FIG. 1. Schematic of a weak link between two charge Kondo
circuits (CKC). Each circuit consists of a large metallic is-
land (QD), which is embedded into two-dimensional electron
gas (2DEG) and connects to two large electrodes through the
single-mode quantum point contacts (QPCs). The 2DEG
(plain area) is in the integer quantum Hall regime ν = 1.
The red line with arrows denotes the chiral edge mode which
backscatters at the center of the narrow constriction. The
QPCs are fine tuned by field effects in split gates (blue boxes)
to different regimes. We name the QPCs in the left CKC as
QPC11, QPC12 and the QPCs in the right CKC as QPC21,
QPC22. The right CKC (grey color) is at the reference tem-
perature T while the left circuit (orange color) is at higher
temperature T +∆T .

setup. Indeed, the CKC can be tuned into a 1CK model
by simply deactivating one of the two QPCs in it. These
two CKCs are connected together by a weak tunnel-
ing (barrier, weak link) between two QDs. In order to
study the thermoelectric transport through the DCKC
system, the left CKC is set up at higher temperature
T + ∆T in comparison with the right circuit, which is
at temperature T . The temperature drops at the central
weak link.

The spinless Hamiltonian describing the two CKCs
coupled weakly at the center in which each QD is cou-
pled strongly to the lead through two QPCs (Fig. 1)
has the form H=HL +HT +HR, where

HT = (td†1d2 + h.c.). (1)

describes the tunneling between two dots, dj stands for
the electrons in the dot j, j = 1, 2. The Hamiltonian
HL/R describing each (QD-QPC) structure has the form
HL/R=H0L/R+HCL/R+HsL/R. The Hamiltonian H0,j

(j = L,R) describing the propagation of the edge states
is given by

H0,j = −ivF
∑

α=1,2

∫ ∞

−∞
dx

[
ψ†
R,j,α(x)∂xψR,j,α(x)

−ψ†
L,j,α(x)∂xψL,j,α(x)

]
, (2)

where ψL/R,α,j represents the incoming/outgoing chi-
ral fermions at the QPC α of the CKC j, and vF is the
Fermi velocity. For simplicity we assume that the Fermi
velocity is the same for all QPCs. Note that the opera-
tor dj can be expressed through the fermionic operators
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ψj,α as dj =
∑

α=1,2 ψj,α(−∞). The Hamiltonian HC,j

characterizes the Coulomb interaction in the dot [14, 56]

HC,j= EC,j

∫ ∞

0

dx

[
nj −

∑
α=1,2

ψ†
j,α(x)ψj,α(x)−Nj

]2

, (3)

where EC,j is the charging energy of the QD j. The
number of electrons entering the dot (taking values 0, 1
in units of e) through the weak link and the QPCs is
demonstrated by the operator nj and the second term
in the parentheses (with ψj,α = ψL,j,α + ψR,j,α) respec-
tively. Nj is the normalized gate voltage, controlled by
plunger gates (not shown in Fig. 1). The Hamiltonian
Hs,j describing the backward scattering at the QPCs,
with the reflection amplitude rj,α, writes

Hs,j= −D
π

∑
α=1,2

|rj,α|
[
ψ†
R,j,α (0)ψL,j,α (0) + h.c.

]
, (4)

D is a bandwidth.
The appropriate technique to describe the interact-

ing electrons in the QD and QPCs is the bosonized
representation [44, 57]. The detailed bosonization of
the Hamiltonian H can be read in Refs. [14, 25].
One should notice that the fermionic fields are related
to the bosonic field at the QPC α of the CKC j as
ψL/R,j,α(x) ∼ e−iϕj,α(x). The actions in the bosonic
language are presented in the Section IV.

III. GENERAL FORMULAS FOR CURRENT,
ELECTRIC CONDUCTANCE AND

THERMOELECTRIC COEFFICIENT

In order to study the thermoelectric effects in the
DCKC with a small temperature drop ∆T ≪ T at
the weak link between two QDs, we consider the tunnel
charge current across the tunnel contact in the tunneling
amplitude |t| as

I = −2πe|t|2
∫ ∞

−∞
dϵ ν1(ϵ)ν2(ϵ) [f1(ϵ)− f2(ϵ)] . (5)

Here we denote the Fermi distribution functions as
f1(ϵ) = f(ϵ, T + ∆T ), f2(ϵ) = f(ϵ + e∆V, T ), with
∆V is an applied thermo-voltage to implement a zero-
current condition for the electric current between the
source and drain, and we define the densities of states
νj(ϵ) = − (1/π) cosh

(
ϵ
2T

) ∫∞
−∞ Gj ((1/2T ) + it) eiϵtdt

with Gj(τ) = −⟨Tτ dj(τ)d†j(0)⟩ are exact Green’s Func-

tions (GF) in the terminals j = 1, 2. The thermoelectric
coefficients in the linear response regime are computed
as follows. The electric conductance casts a form

G =
∂I

∂∆V

∣∣∣∣
∆T=0

=
e2|t|2

2πT

∫ ∞

−∞
dϵ

∫ ∞

−∞
dt1

×G1

(
1

2T
+ it1

)
eiϵt1

∫ ∞

−∞
dt2G2

(
1

2T
+ it2

)
eiϵt2 , (6)

and the thermoelectric coefficient is given by

GT =
∂I

∂∆T

∣∣∣∣
∆V=0

= − e|t|2

2πT 2

∫ ∞

−∞
dϵ ϵ

∫ ∞

−∞
dt1

G1

(
1

2T
+ it1

)
eiϵt1

∫ ∞

−∞
dt2G2

(
1

2T
+ it2

)
eiϵt2 . (7)

The thermopower (or the Seebeck coefficient) in the lin-
ear regime is defined at I = 0 as

S = − ∆V

∆T

∣∣∣∣
I=0

=
GT

G
. (8)

Following Matveev and Andreev [14] we define

dj(τ) = ψ
(0)
j,α(τ)Fj(τ), where ψ

(0)
j,α(τ) = ψ

(0)
α,j(−∞, τ),

the operator Fj obeys the commutation relation
[Fj , nj ] = Fj and takes into account effects of
interaction and reflection given by Eqs. (3,4).

Since the operators ψ
(0)
j,α and Fj are decoupled, the

GFs at imaginary times are factorized as Gj(τj) =
− (ν0jπT/ sin [πTτj ])Kj(τj), where ν0j is the density of
states in the dot j without interaction and Kj(τ) =

⟨TτFj(τ)F
†
j (0)⟩ accounts for interaction effects. As a

result, the electric conductance and the thermoelectric
coefficient are given by:

G =
π

2
GCT

∫ ∞

−∞

dt

cosh2(πTt)
K1

(
1

2T
+ it

)
K2

(
1

2T
− it

)
, (9)

GT = − iπGC

4e

∫ ∞

−∞

dt

cosh2(πTt)

×
[(
∂tK1

(
1

2T
+ it

))
K2

(
1

2T
− it

)
− K1

(
1

2T
+ it

)(
∂tK2

(
1

2T
− it

))]
, (10)

where GC = 2πe2ν01ν02|t|2 is a conductance of the cen-
tral (tunnel) area. The computation of thermoelectric
coefficients in Eqs. (9-10) [58] requires the explicit form
of the correlation functions K1,2

(
1
2T ± it

)
.

IV. CORRELATION FUNCTION Kj(τ):

The time-ordered correlation function Kj(τ) is de-
fined through the operator Fj . The process where the
number of electron entering the QDj through the weak
link is increased from 0 to 1 at time t = 0 and de-
creased back to 0 at time t = τ is demonstrated by

Fj(τ)F
†
j (0). Therefore, the operator nj is replaced by

njτ (t) = θ (t) θ (τ − t) with θ (t) is the unit step func-
tion, and the correlation function Kj(τ) is computed
through the functional integration over the bosonic
fields Kj(τ) = Zj(τ)/Zj(0).
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A. The 1CK case: Perturbative solution:

In the case one CKC is settled down in the FL-1CK
state by decoupling one of the two QPCs, the functional
integral writes

Zj(τ) =

∫
Dϕj exp [−S0,j − SC,j(τ)− Ss,j ] , (11)

where S0,j , SC,j , and Ss,j are Euclidean actions describ-
ing the free (non-interacting) one-dimensional Fermi
gas, Coulomb blockade in the QD and the backscat-
tering at the QPC of the CKC j, respectively. They are
written as

S0,j =
vF
2π

∫ β

0

dt

∫
dx

[
(∂tϕj)

2

v2F
+ (∂xϕj)

2

]
, (12)

SC,j = EC,j

∫ β

0

dt

[
njτ (t) +

1

π
ϕj(0, t)−Nj

]2
, (13)

Ss,j = −2D

π
|rj |

∫ β

0

dt cos [2ϕj(0, t)] . (14)

with β = 1/T . One should notice that the bosonic field
describing the electrons moving through the constric-
tion is blocked by the Coulomb interaction in the QD.
Therefore, Zj(τ) can be computed perturbatively over
|rj | for the small backscattering at the QPC (|rj | ≪ 1),
and the correlation function Kj(τ) then is

Kj(τ) =

(
π2T

γEC,j

)2
1

sin2 (πTτ)
[1− 2γξ|rj | cos (2πNj)

+4π2ξγ|rj |
T

EC,j
sin (2πNj) cot (πTτ)

]
, (15)

with γ = eC , C ≈ 0.577 is Euler’s constant, ξ = 1.59 is
a numerical constant [14].

B. The symmetric 2CK case: Nonperturbative
solution:

For convenient calculation later, one can define the
variables ϕj,ρ/σ = ϕj,1±ϕj,2 so-called charge/spin fields.
The functional integral in this case is written as:

Zj(τ) =
∏

λ=ρ,σ

∫
Dϕjλ exp [−S0,j − SC,j(τ)− Ss,j ] , (16)

where S0,j , SC,j , and Ss,j are Euclidean actions describ-
ing the free Fermi liquid, Coulomb blockade in the QD
and the backscattering at the QPCs of the CKC j , re-
spectively. The action S0,j is presented as a sum of two
independent actions

S0,j =
∑

λ=ρ,σ

vF
2π

∫ β

0

dt

∫
dx

[
(∂tϕj,λ)

2

v2F
+ (∂xϕj,λ)

2

]
. (17)

The Coulomb blockade action SC,j in bosonic represen-
tation reads

SC,j = EC,j

∫ β

0

dt

[
njτ (t) +

√
2

π
ϕj,ρ(0, t)−Nj

]2

. (18)

The contribution Ss,j in the action of each CKC char-
acterizes the weak backscattering at the QPCs is

Ss,j=−
2D

π
|rj |

∫ β

0

dt cos
[√

2ϕj,ρ(0, t)
]
cos

[√
2ϕj,σ(0, t)

]
. (19)

In the absence of backscattering |rj | = 0, the func-
tional integral Eq.(16) is Gaussian. The correlator

K
(0)
j (τ) ≡ Kj(τ)|r=0 = Kj,ρ(τ) is computed at low tem-

perature T ≪ EC and at τ ≫ E−1
C :

Kj,ρ(τ) =
π2T

2γEC,j

1

| sin(πTτ)|
. (20)

The perturbative results (see Ref.[14]) showed that the
thermoelectric properties of the system are controlled
by charge and spin fluctuations at low frequencies (be-
low EC,j). One should notice that the effect of small
but finite |rj | on the charge modes is negligible in com-
parison with the Coulomb blockade but it changes the
low frequency dynamics of the unblocked spin modes
dramatically. The correlation function can be split into
charge and spin components as Kj(τ) = Kjρ(τ)Kjσ(τ),
with Kjσ(τ) = Zjσ(τ)/Zjσ(0). We simply replace

the cos
[√

2ϕj,ρ(0, t)
]

in action Eq. (19) by the

⟨cos[
√
2ϕj,ρ(0, t)]⟩τ =

√
2γEC,j/πD cos [πNj − χjτ (t)],

with χj(t) = πnjτ (t) + δχjτ (t) , δχjτ (t) ≈
π2T
2EC,j

[cot(πT (t− τ)− cot(πTt)] and obtain the effec-

tive action for the spin degrees of freedom in the form

Sτj =

∫
dx

∫ β

0

dt
vF
2π

[
(∂tϕj,σ)

2

v2F
+ (∂xϕj,σ)

2

]
−
∫ β

0

dt

√
4D

vF
λ̃jτ (t) cos

[√
2ϕj,σ(0, t)

]
, (21)

where

λ̃jτ (t) = Λj(−1)nτ (t) cos [πNj − δχjτ (t)] ,

Λj = |rj |
√

2γvFEC,j

πD
. (22)

After performing the refermionization, our model [as
shown in Eq. (21)] is mapped onto an effective Anderson
model, which is described by Hamiltonian

Heff
j,τ (t)=

∫ [
vF kc

†
j,kcj,k− λ̃jτ(t)(c+ c†)

(
cj,k− c†j,k

)]
dk, (23)

in which the operators c†j,k and cj,k satisfying the anti-

commutation relations
{
cj,k, c

†
j,k′

}
= δ

(
k − k

′
)

create

and destroy chiral fermions; c is a local fermionic an-

nihilation operator anti-commuting with c†j,k and cj,k.
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We see that the model is free and equivalent to a
resonant level model where the leads are coupled to
Majorana fermion η = (c + c†)/

√
2 on the impurity.

The time dependent Hamiltonian (23) can be split into

Heff
j,0 +H ′

j,τ (t) by replacing λ̃jτ (t) → λ̃jτ (t)/ (−1)
nτ (t).

The time-independent Hamiltonian part Heff
j,0 is Heff

j,τ=0
while the correction is

H ′
j,τ (t) = 2Λj{cos [πNj ]− cos [πNj− δχjτ (t)]} ηζ, (24)

with ζ =
∫∞
−∞

(
cj,k − c†j,k

)
dk/

√
2 describes the Majo-

rana fermion of the leads in the resonant level model.
Our solution, being nonperturbative in |rj | and account-
ing for low-frequency dynamics of the spin modes, leads
to the appearance of the Kondo-resonance width Γj in
the vicinity of Coulomb peaks

Γj (Nj) =
8γEC,j

π2
|rj |2 cos2(πNj). (25)

We then compute the correlation function straightfor-
wardly and obtain the zero-order term corresponding to

the Hamiltonian part Heff
j,0 as

K
(0)
j

(
1

2T
+ it

)
=
πTΓj

γEC,j

1

cosh(πTt)

×
∫ ∞

−∞

eω(1/2T+it)(
ω2 + Γ2

j

) (
1 + eω/T

)dω, (26)

and the first-order term when the correction Hamilto-
nian part H ′

j,τ (t) is taken into account, is

K
(1)
j (

1

2T
+ it) =− 4T

EC,j

|rj |2 sin (2πNj)

cosh(πTt)

× ln

(
EC,j

T + Γj

)∫ ∞

−∞
dω

ωeω(1/2T+it)(
ω2 + Γ2

j

) (
1 + eω/T

) . (27)
The formulas (26) and (27) will be used to calculate the
thermoelectric coefficients in the next Section.

V. MAIN RESULTS

The first work of the Authors [25] considered the weak
effects of the non-Fermi liquid behaviour in the thermo-
electric transport. The approach used in [25] is based on
accounting for the perturbative corrections to the trans-
port off-diagonal coefficients and is limited by the per-
turbation theory domain of validity (high-temperature
regime). These calculations, being very useful for under-
standing the flow towards the non-Fermi liquid interme-
diate coupling fixed point, neither become valid at the
low-temperature regime, nor shed a light on reduction
of the symmetry due to the emergency of the Majo-
rana (parafermionic) states. The main idea of this work
is to develop a controllable and reliable approach for
the quantitative description of the Fermi-to-non-Fermi

liquid crossovers and interplay around the intermediate
coupling fixed points. It therefore provides a comple-
mentary study of the model [25] and completes the the-
ory of thermoelectrics in DCKCs.

A. Weak coupling between single- and
two-channel charge Kondo circuits

In this case, for instance, we consider the left CKC
is in the FL-1CK state while the right CKC is in the
NFL-2CK state. We apply the correlation functions
K1

(
1
2T + it

)
and K2

(
1
2T − it

)
as shown in Eqs. (15)

and (26-27), respectively. The electric conductance is
obtained as

G =
π2GCT

3

96γ3E2
C,1EC,2

FG

(
Γ2

T

)
, (28)

with FG is a dimensionless parameter demonstrating the
competition between the Kondo resonance of the right
CKC Γ2 and the temperature T . It is computed as

FG (p2) =

∫ ∞

−∞
du J (p2, u) ,

J (p2, u) =

[
u2 + π2

] [
u2 + 9π2

]
cosh2

(
u
2

)
[u2 + p22]

. (29)

The thermoelectric coefficient is given by

GT = − π5ξGCT
3Γ2

72eγ2E3
C,1EC,2

FG

(
Γ2

T

)
|r1| sin (2πN1)

− πGCT
3

360eγ2E2
C,1EC,2

FT

(
Γ2

T

)[
2π2ξΓ2

EC,1
|r1| sin (2πN1)

+|r2|2 ln
(

EC,2

T + Γ2

)
sin (2πN2)

]
, (30)

with

FT (p2) =

∫ ∞

−∞
duu2J (p2, u) . (31)

Following the discussion in Ref. [25], based on the per-
turbative solution, the Seebeck effect on a weak link
between 1CK and 2CK is characterized by the competi-
tion between the Fermi and non-Fermi liquids (see Eq.
(24) in the Ref. [25]). However, in this part, it is true
for high temperature T ≫ Γ2. At very low temperature,
T ≪ Γ2, the TP behaves only the FL.

1. T ≫ Γ2 limit: Fermi-liquid on the left and non
Fermi-liquid on the right CKC:

At temperature T ≫ Γ2 the expression in Eq. (30)
reproduces the perturbative result as represented in Eq.
(23) of Ref.[25]. The TP is thus similar to the formula
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(24) in Ref.[25]:

S = −4π3ξγ

3e
|r1|

T

EC,1
sin (2πN1)

−526γ

π2e
|r2|2 ln

(
EC,2

T

)
sin (2πN2) . (32)

The crossover line separating the two contributions in
the TP is defined as follows:

789

2πξ
ln

(
EC,2

T̃

)
EC,1

T̃
=

|r1|
|r2|2

. (33)

If Γ2 ≪ T ≪ T̃ , NFL-2CK behavior of the TP is
predicted to be pronounced. In the opposite limit,

T ≫ T̃ ≫ Γ2, the FL-1CK regime with the weak NFL-
2CK corrections is expected.

2. T ≪ Γ2 limit: fully Fermi-liquid regime:

At temperature T ≪ Γ2 the expression in Eq. (30)
induces the linear temperature term in the square brack-
ets. The TP thus behaves the FL characteristic as

S = −7682π3ξγ

5523e

[
|r1|

T

EC,1
sin (2πN1)

+
1431

3841π2ξ
|r2|2 ln

(
EC,2

Γ2

)
T

EC,2
sin (2πN2)

]
. (34)

In summary, in the situation of the weak coupling be-
tween single- and two-channel charge Kondo circuits,
there exist two energy scales Γ2 (Γ2 ≤ (8γ/π2)EC,2|r2|2)
and T̃ of temperature in the regime (0, EC,2) in which
one finds more chances for the FL picture than the NFL
one.

B. Weak coupling between two two-channel
charge Kondo circuits

We take into account both K
(0)
j

(
1
2T + it

)
, we have

G =
GCT

2

24γ2EC,1EC,2
FC

(
Γ1

T
,
Γ2

T

)
, (35)

with

FC (p1, p2) =

∫ ∞

−∞
dz

∫ ∞

−∞
duF (p1, p2, z, u) , (36)

F (p1, p2, z, u) =
p1p2u

[
u2 + 4π2

]
sinh

(
u
2

) [
cosh (z) + cosh

(
u
2

)]
× 1[(

z + u
2

)2
+ p21

] [(
z − u

2

)2
+ p22

] . (37)

The integral in Eq. (10) gives the zero value when

we apply K
(0)
1,2

(
1
2T ± it

)
for both sides: G

(0)
T =

0. We therefore need to consider the first or-
der of the correlation function. We take into ac-
count, for instance, K

(0)
1

(
1
2T + it

)
K

(1)
2

(
1
2T − it

)
and

K
(1)
1

(
1
2T + it

)
K

(0)
2

(
1
2T − it

)
, we obtain the lowest or-

der (we consider the model in the vicinity of the inter-
mediate coupling fixed point) non-zero contribution to
thermoelectric coefficient as follows

G
(1)
T = − GCT

3

24eγπEC,1EC,2

×
{
|r1|2

Γ1
ln

(
EC,1

T + Γ1

)
sin (2πN1)FT,s

(
Γ1

T
,
Γ2

T

)
+

|r2|2

Γ2
ln

(
EC,2

T + Γ2

)
sin (2πN2)FT,m

(
Γ1

T
,
Γ2

T

)}
,(38)

where

FT,s(p1, p2) =

∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z +

u

2

)
zF (p1, p2, z, u) , (39)

FT,m(p1, p2) =

∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z − u

2

)
zF (p1, p2, z, u) . (40)

The Eqs. (35-38) are the central results of this part.
By varying parameters such as temperature, gate volt-
ages, and/or reflection amplitudes at the QPCs, one
can achieve four different regimes of the thermoelectric
transport. The details of the calculations for the electric
conductance and the thermal coefficient are represented
in the Appendix. We show the formulas for the TP in
each regime in four segments below.

1. T ≫ (Γ1, Γ2), fully non-Fermi-liquid regime:

The TP demonstrates the weak NFL behavior at
“high” temperature: T ≫ (Γ1, Γ2) as

S = −3π2γ

16e

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+|r2|2 ln
(
EC,2

T

)
sin (2πN2)

]
. (41)

The similarity between Eq. (41) and Eq. (28) of
Ref. [25] implies that the regime T ≫ (Γ1, Γ2) repro-
duces the perturbative result. The Kondo-resonance Γj

is equal to zero at the Coulomb peaks and increased
when the gate voltage Nj goes out of the half inte-
ger values. This situation occurs at the centre of the
(N1, N2) window (if one considers 0 ≤ N1, N2 ≤ 1).
Due to the logarithmic dependent on temperature but
small value of TP [see Eq. (41)] it is so-called a weak
non-Fermi–liquid picture. The maximum value of TP

Smax ∼ |r1|2 ln
(

EC,1

T

)
+ |r2|2 ln

(
EC,2

T

)
is reached when

N1 = N2 = 0.25.
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2. Γ1 ≪ T ≪ Γ2, weak non-Fermi-liquid on the left and
Fermi-liquid on the right CKC:

Let us recall that the Kondo resonances’ widths Γ1,Γ2

depend on the gate voltages and therefore compete
with temperature effects in the vicinity of the Coulomb
peaks. With a given temperature this situation occurs
when the QD 1 is closer to a Coulomb peak (N1 is closer
to a half integer value) than the QD 2 is. The TP
includes two components: weak non-Fermi-liquid and
Fermi-liquid characteristics as

S = − 256γ

75eπ2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+
25π3

128

T

Γ2
|r2|2 ln

(
EC,2

Γ2

)
sin (2πN2)

]
. (42)

The crossover line between two regimes is defined as

EC,2

T ∗ ln

(
EC,1

T ∗

)
=

25π5

1024γ cos2 (πN2)

1

|r1|2

× ln

(
π2

8γ|r2|2 cos2 (πN2)

)
.(43)

The NFL behavior is dominated if T ≪ T ∗ while the
FL property is predicted at the opposite limit T ≫ T ∗.

3. Γ2 ≪ T ≪ Γ1, Fermi-liquid on the left and weak
non-Fermi-liquid on the right CKC:

This situation is opposite to the case discussed in the
Section VB2. The regime is achieved when the QD 2
is closer to a Coulomb blockade peak than the QD 1 is.
The TP is characterized by the FL on the left and weak
NFL effect on the right CKC as

S = − 256γ

75eπ2

[
25π3

128

T

Γ1
|r1|2 ln

(
EC,1

Γ1

)
sin (2πN1)

+|r2|2 ln
(
EC,2

T

)
sin (2πN2)

]
. (44)

The crossover line between two regimes is defined as

EC,1

T ∗∗ ln

(
EC,2

T ∗∗

)
=

25π5

1024γ cos2 (πN1)

1

|r2|2

× ln

(
π2

8γ|r1|2 cos2 (πN1)

)
.(45)

The NFL behavior is dominated if T ≪ T ∗∗ while the
FL property is predicted at the opposite limit T ≫ T ∗∗.
If the two CKCs are symmetry, T ∗∗ = T ∗.

4. T ≪ (Γ1, Γ2), fully Fermi-liquid regime:

When the temperature is decreased to approach the
zero value, the TP of the system behaves in accordance

V

V

V

V

FIG. 2. Schematic of a strong coupling between two charge
Kondo circuits. Notations are the same as on Figure 1 with
two distinct differences: i) different color scheme used for
the left (orange, hot) and right (yellow, cold) parts of the
circuit; ii) the central part of the system is modified. The
tunnel contact in the center of Fig 1 is replaced by almost
transparent QPC. The chiral edge mode strongly couples
QD1 and QD2. The temperature gradient (shown by con-
tinuous change of colour from orange to yellow) is applied
across the central QPC.

with the nonperturbative FL picture:

S = −3πγT

7e

[
|r1|2

Γ1
ln

(
EC,1

Γ1

)
sin (2πN1)

+
|r2|2

Γ2
ln

(
EC,2

Γ2

)
sin (2πN2)

]
. (46)

The TP is a linear function of the temperature. How-
ever, the pre-factors are giant when both QDs are in the
vicinities of the Coulomb peaks. The system has strong
FL property.

C. Discussion

The investigation of TP for the weak coupling be-
tween two CKCs in both cases: 1CK - 2CK and 2CK -
2CK shows the competition between the FL and NFL
picture. However, the windows of parameters to observe
the FL property are much broader than the windows to
access the NFL one. The reason is that the NFL inter-
mediate coupling fixed points of MCK are hyperbolic
and therefore unstable. The results of this work not
only cover the perturbative accessible regimes, which
have been represented in Ref. [25], but also show a rich
property of the TP in different domains of parameters.

Extending the proposal of the weak coupling between
two CKCs [25] to the regime of almost transparent QPC
in the central area of the DCKC, the very recent ex-
periment [53] and theory [54, 55] have investigated the
strong coupling limit. Let us comment on the connec-
tion between the weak and strong coupling regimes of
the DCKCs. In Ref. [25] we have considered the DCKC
weakly connecting 1CK-1CK or 1CK-2CK or 2CK-2CK.
The same realization for the strong coupling of two
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Kondo simulators has also been theoretically suggested
in [25] and experimentally realized recently in [53] for
1CK-1CK coupling [59]. One of the most exciting the-
oretical predictions of the two-impurity single channel
Kondo effect [61–63] is a possibility to map the model
under certain assumptions onto the 2CK Hamiltonian.
Interestingly, the Refs. [53–55] showed that at the triple
degeneracy point of the DCKC Z3 symmetry and cor-
responding local parafermion emerge. It is straight-
forward to extend the idea [25] to MCK-NCK strong
coupling (see Fig 2). Suppose that there are M > 1
identical QPCs in the left hand side of the DCKC and
N > 1 identical QPCs in the right side of it. The total
degeneracy is M + 1 + N and corresponding emergent
local symmetry is ZM+N+1. There are three important
(M,N) realizations accessible through existing experi-
mental setups: i) (2, 1) or (1, 2) connecting 1CK and
2CK with emergent symmetry Z4; ii) (2, 2) and iii) (3, 1)
or (1, 3) with emergent symmetry Z5. Corresponding
weak link setups are characterized by the symmetries:
i) U(1) × Z2; ii) Z2 × Z2 and iii) U(1) × Z3. As the
weak coupling regimes of ii) and iii) are clearly distinct,
being characterized by both different symmetries and
different Lorenz ratios (see Ref. [29] for more details),
it is interesting to examine regimes ii) and iii) in the
strong coupling limit. In particular it is important to
understand the symmetry of local parafermion emerging
in the strong link setup. In addition, switching between
different intermediate coupling fixed points results in
crossovers between various fractionalized modes mani-
festing itself in distinctly different regimes of the charge
and heat transport.
The weak link regime discussed in this manuscript

was analysed using a standard approach based on the
transport integrals [25]. The validity of this approach
is justified by an assumption that both temperature
and voltage drops occur exactly at the central tunnel
barrier. As a result, both the left and the right parts
of the DCKC are considered at thermal and mechani-
cal equilibrium being characterized by certain temper-
ature T and chemical potential µ. This approach is
clearly invalid for the strong link between two sides
of the Kondo simulator where both the temperature
and the voltage changes continuously across the cen-
tral QPC. The full-fledged linear response theory of the
charge and heat transport across the strong link of the
two-site Kondo simulators can be constructed by us-
ing Luttinger’s pseudo-gravitational approach [64, 65] or
thermo-mechanical potential [66, 67] method in combi-
nation with Kubo equations. The theory beyond linear
response requires also using Keldysh formalism [66, 67]
and represents an interesting and important direction
for the future investigation.

VI. CONCLUSION

In this work, we revisited the thermoelectric trans-
port at the weak link of the DCKC model proposed in

the Ref. [25]. The Abelian bosonization approach is
used for both 1CK and 2CK setup while the refermion-
ization technique is applied in order to solve the 2CK
model nonperturbatively. We show the different win-
dows of the parameter set where the TP behaves either
the full FL or NFL characteristics or the competition
between these properties. The nonperturbative results
not only cover the perturbative results but also be ap-
plicable in the lower temperature regime T < |rj |2EC,j .
We predict that the TP is enhanced in the DCKC in
comparison with the single CKC setup. Indeed, a com-
plex charge Kondo circuit which shows the diversity of
the competition between the FL and NFL properties,
can be a potential thermoelectric material. Moreover,
we propose to use the experimental implementation in
Ref. [53] for investigating the different parafermion con-
tributions to the quantum thermoelectricity when the
coupling between QDs is switched from weak to strong.
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APPENDIX

In this Appendix we represent the details of the dif-
ferent approaches at different limits in order to obtain
the results shown in the Subsection VB.

1, If p1 → 0, p2 → 0, we have:

lim
p1→0

p1(
z + u

2

)2
+ p21

= πδ
(
z +

u

2

)
, (47)

lim
p2→0

p2(
z − u

2

)2
+ p22

= πδ
(
z − u

2

)
. (48)

As a result

lim
p2→0

FT,m (p1 → 0, p2)

p2

= lim
p2→0

∫ ∞

−∞
du

πu3
[
u2 + 4π2

]
sinh [u] [u2 + p22]

=

∫ ∞

−∞
du
πu

[
u2 + 4π2

]
sinh [u]

=
3π5

4
, (49)

and, finally

lim
p1→0

FT,s (p1, p2 → 0)

p1
=

3π5

4
. (50)
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We obtain the electric conductance as

G(0) =
π2GCT

2

6γ2EC,1EC,2
, (51)

and the thermoelectric coefficient as

G
(1)
T = − π4GCT

2

32eγEC,1EC,2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+|r2|2 ln
(
EC,2

T

)
sin (2πN2)

]
. (52)

2, If p1 → 0, p2 ≫ 1 we have:

FC (p1 → 0, p2) =

∫ ∞

−∞
du
πp2u

[
u2 + 4π2

]
sinh [u] [u2 + p22]

,

FC (p1 → 0, p2 ≫ 1)=
π

p2

∫ ∞

−∞
du
u
[
u2 + 4π2

]
sinh [u]

=
9π5

4p2
,(53)

and

FT,m (p1 → 0, p2 ≫ 1)=
π

p2

∫ ∞

−∞
du
u3

[
u2 + 4π2

]
sinh [u]

=
3π7

2p2
.

(54)

The calculation of the FT,s is a bit complicated, which
concerns the principal value (PV) as follows.

FT,s (p1 → 0, p2 ≫ 1)

p1
=

1

p2
PV

∫ ∞

−∞
dz

∫ ∞

−∞
du

×
uz

[
u2 + 4π2

](
z + u

2

)
sinh

(
u
2

) [
cosh (z) + cosh

(
u
2

)]
=

8

p2

∫ ∞

−∞
dp

∫ ∞

−∞
dq

{
q
[
q2 + 4π2

]
sinh (q) cosh (p/2) cosh (p/2− q)

−
tanh (p/2) q2

[
q2 + 4π2

]
p cosh (p/2 + q) cosh (p/2− q)

}
=

192π4

25p2
. (55)

The electric conductance G and the thermoelectric co-
efficient GT is computed at the first non-zero term in
the nonperturbative treatment are

G(0) =
3GCπ

5T 3

32γ2Γ2EC,1EC,2
, (56)

G
(1)
T = − 8GCπ

3T 3

25eγEC,1EC,2Γ2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+
25π3

128

T

Γ2
|r2|2 ln

(
EC,2

Γ2

)
sin (2πN2)

]
. (57)

3, p1 ≫ 1, p2 → 0: This limit is opposite to the second
limit. The calculation process is the same as the above
one.

FC (p1 ≫ 1, p2 → 0)

=
π

p1

∫ ∞

−∞
du
u
[
u2 + 4π2

]
sinh [u]

=
9π5

4p1
, (58)

FT,m (p1 ≫ 1, p2 → 0)

p2
=

1

p1
PV

∫ ∞

−∞
dz

∫ ∞

−∞
du

×
uz

[
u2 + 4π2

](
z − u

2

)
sinh

(
u
2

) [
cosh (z) + cosh

(
u
2

)] =
192π4

25p1
,

(59)

FT,s (p1 ≫ 1, p2 → 0) =
3π7

2p1
. (60)

The electric conductance is

G(0) =
3GCπ

5T 3

32γ2EC,1EC,2Γ1
, (61)

and the thermoelectric coefficient is

G
(1)
T = − 8GCπ

3T 3

25eγEC,1EC,2Γ1

×
{
25π3

128

T

Γ1
|r1|2 ln

(
EC,1

Γ1

)
sin (2πN1)

+ |r2|2 ln
(
EC,2

T

)
sin (2πN2)

}
. (62)

4, If p1 ≫ 1, p2 ≫ 1, we simply remove the terms
which are summed with p21 and p22 in the denominator
of the formula (37). We then obtain:

FC (p1 ≫ 1, p2 ≫ 1) =
1

p1p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

×
u
[
u2 + 4π2

]
sinh

[
u
2

] [
cosh (z) + cosh

(
u
2

)] =
64π4

5p1p2
. (63)

FT,m (p1 ≫ 1, p2 ≫ 1) =
1

p1p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

×
(
z − u

2

)
uz

[
u2 + 4π2

]
sinh

[
u
2

] [
cosh (z) + cosh

(
u
2

)] =
192π6

35p1p2
. (64)

FT,s (p1 ≫ 1, p2 ≫ 1) =
1

p1p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

×
(
z + u

2

)
uz

[
u2 + 4π2

]
sinh

[
u
2

] [
cosh (z) + cosh

(
u
2

)] =
192π6

35p1p2
. (65)

The electric conductance and the thermoelectric coeffi-
cient in this limit are

G =
8GCπ

4T 4

15γ2EC,1EC,2Γ1Γ2
, (66)

G
(1)
T = − 24GCπ

5T 5

105eγEC,1EC,2Γ1Γ2

×
{
|r1|2

Γ1
ln

(
EC,1

T + Γ1

)
sin (2πN1)

+
|r2|2

Γ2
ln

(
EC,2

T + Γ2

)
sin (2πN2)

}
. (67)
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